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This paper concerns r andom systems made up out of a finite collection of 
elements. We are interested in how a fixed structure of interactions reflects 
on the assignment of probabilities to overall states. In particular, we 
consider two simple models of random systems: one generalizing the notion 
of " G i b b s  ensemble"  abstracted from statistical physics; the other, 
" M a r k o v  fields" derived from the idea of a Markov chain. We give back- 
ground for these two types, review proofs that  they are in fact identical for 
systems with nonzero probabilities, and explore the new behavior that 
arises with constraints. Finally, we discuss unsolved problems and make 
suggestions for further work. 
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1. P R E L I M I N A R I E S  

W e  d e s c r i b e  a s y s t e m  b y  m e a n s  o f  a f in i te  g r a p h  G w h o s e  ve r t i c e s  Z r e p r e s e n t  

c o m p o n e n t s  o f  t h e  s y s t e m  ca l l ed  sites, a n d  w h o s e  ( u n d i r e c t e d )  edges  r e p r e s e n t  

m u t u a l  i n t e r a c t i o n s .  E a c h  s i te  z ~ Z c a n  a s s u m e  a n y  o f  a r a n g e  f2~ o f  p o s s i b l e  

(elementary) states; t h i s  r e p e r t o i r e  m a y  v a r y  f r o m  si te  to  site. A n  a s s i g n m e n t  
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of values to all the sites in Z determines a state of the overall system: so the 
space of states is simply the Cartesian product f2 = 1-I~z g2,. We also 
consider substates which assign values only to some subset of Z. For example, 
if A ~ Z, any list a s l-I~a f2, is a substate whose domain is A (in general, 
lower case Greek letters a, 13, ~,, 3, e,... will be used for substates, and italic 
Roman capitals A, B, C, D, E,... for their corresponding domains). We may 
write ~o = a/3 to indicate that the state co ~ f2 is built up out of substates 

and/3--or  more precisely, that Z is the disjoint union of A and B, and the 
states agree on their respective domains of definition. We use " s ta te"  loosely 
to include "substa te"  or "elementary state," when context makes the 
meaning clear. 

That two sites are connected by an edge of the graph indicates that they 
interact. The sites which interact with those of a given subset A ___ Z compose 
the environment of A. Parts of the system which do not  interact are called 
independent. In other words, two disjoint subsets of Z are independent when 
one is outside of the environment of the other. 

Here we are concerned with probabilistic descriptions of the system. 
Thus to each state oJ ~ ~ we assign a nonnegative likelihood P(~).  If  a is a 
substate, we may also define a probability P(~. )  = ~B P(a~), where the sum 
ranges over all possible/~--that is, over all states ~/~ ~ f~ which agree with a 
on its domain. In this notation the usual convention for normalization is 
P ( . )  = 1. But we do not make this assumption, because it would just be a 
nuisance in proofs, and probabilities can always be normalized as the last 
step in a construction anyway. A triplet (G, f~, P)  will be called a random 
system. 

How should the structure of interactions in the system represented by G 
be related to the probability distribution? Certainly the likelihood of a 
particular substate on some portion of the system A should change with 
different conditions on its environment. We make the simplifying assumption, 
however, that this probability does not depend on any subset B independent 
of A: That  is, once the state of the environment is known, any further 
information about states outside of the environment does not effect our 
expectations about A. In particular, there are no " indirect"  influences: If  a 
site x interacts with y, and y with z, it is not true that x influences z, unless 
these sites are linked directly. This assumption resembles the definition of a 
Markov chain, in which the likelihood of a particular state at the present 
time depends on the state at the previous moment, but not on any earlier 
details of past history. In our situation, of course, the pattern of inter- 
dependences recorded in G is finite and undirected, and need not take the 
form of a temporal chain. Nevertheless, the analogy suggests calling systems 
which satisfy the above assumption "Markovian."  

To make this notion precise, we specify how the likelihood of a substate 
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a is modified once a state ~, has been fixed in some disjoint part  of the system. 
Thus in the usual way we define the conditional probability ~ given ~, to be 

P(~17) = P(~ , . ) /P ( .~ , . )  

i.e., the fractional chance that, among all the states that include y, the 
substate a will hold as well (we have written P( . ) , . )  rather than P (y . )  to 
emphasize that the range of  the sum in the denominator includes all possible 
substates on the domain A). Now the Markov assumption becomes: If  E is 
the environment of the domain A, and C is what remains independent of A 
outside of the environment, then 

P(~[~) = P(~[~,) 

that is, the probability of a given e is unchanged when ~, is known as well. 
There are several equivalent descriptions of a Markov system, some of 

which are intuitively or algebraically simpler than the above. Using the 
definition of conditional probabilities and multiplying out the denominators, 
we get 

P((xe),)P(.e.) = P(ae . )P( .  ~,) (M1) 

This form has the advantage of being well defined even if P is allowed to 
vanish on some states. We note that P(ae~,) depends on a and ~ through 
separate factors. Thus if a' and ; / a r e  different substates on the same domains 
A and C, the summations can be eliminated as follows: 

(~,~,)(., .)(~',~, ')(. , .) = ( ~ , . ) ( . ~ 7 ) ( ~ ' , . ) ( . , ~ / )  

= ( ~ . ) ( .  ~ , ' ) (~ '~ . ) ( .  ~ , )  

= ( ~ y ' ) ( .  ~ . ) (~ '~ , ) ( .  ~ . )  

where the Ps have been omitted from in front of the parentheses, If  we divide 
by ( . o )  2 and restore the Ps, we find 

P(c~,)P(a ' ,y ' )  = P(aE~/)P(~'E~,) (M2) 

Conversely, if (M2) holds, (M1) follows by summing over all possible states 
cd and ~/. This derivation is valid even when some of the probabilities are 
zero, for P ( . r  cannot vanish unless P(~E~,) = 0 for all c~ and ~,, in which 
case both (M1) and (M2) are satisfied trivially. 

Note that although the domain C in (M2) is the largest subset inde- 
pendent of A, the converse need not be true: the environment of C may be 
smaller than E (see example in Fig. 1). We remove this asymmetry in our 
final form for the Markov conditions: If  A and B are independent domains, 
then 

P (aafl)P (a'~fl') = P (~afl')P (~'afi) (M) 
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Fig. 1. The environment Ec is a proper subset of Ea. 

Here S is a separator of the domains A and B-- tha t  is, a subset that contains 
both of their environments (but may not be equal to either). We see that (M2) 
follows from (M) by specializing S to be the environment E of A. Conversely, 
all conditions (M) appear in disguise among the (M2): For, if cr = e3--i.e., S 
is bigger than the environment of A--simply take V = 3/3 and V' = ~/3' in 
(M2) and retrieve (M). A random system that satisfies (M) for all ~, or,/3 
will be called Markovian. 

In the case of positive systems (P > 0) we may write (M) in terms of 
ratios: 

P(a'cr~)/P(a~[3) = P(a'(z~')/P(c~crfl') 

obtaining another paraphrase of the Markov assumption: The relative 
chances of two alternative substates , '  and ~ are unaffected by changes on 
domains independent of A. The fact that only relative probabilities are 
determined by the Markov conditions suggests referring all states to some 
arbitrary fixed state, which we will call the null state and designate o. Then 
the relative chance of c~' and ~ may be written P(,'ao)/P(c~Eo), to emphasize 
that it depends only on the state ~ of the environment (the same symbol o will 
denote any substate of the reference state, when the domain is clear from 
the context). 

The Markov conditions (M) are in general highly redundant. We single 
out a special class of them called local Markov conditions, in which states 
vary from the null state at single sites: If  zl and z2 are noninteracting sites, 
then 

P([l~2)P(o~o) = P(~l~o)P(o~[2) (LM) 

where [~ and [2 are states on zx and z2, respectively. Assuming P > 0, it is 
easy to see that all the conditions (M) can be reconstructed from these local 
conditions. First check the case of the domains' being single sites: 

( ~ 1 ~ o ) ( o ~ ) ( ~ ' ~ o ) ( o ~ ' )  
( ~ 1 ~ ) ( ~ 1 ' ~ ' )  = (o~o)~ = ( ~ ' ) ( ~ 1 ' ~ )  
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where we have omitted Ps and used the same arrangement of factors as in 
the derivation of (M2) from (M1). Next, suppose that (M) is true for all , ,/3 
such that ]~[ + ]/31 ~< n ([a[ is the number of sites in A). Then if we enlarge 

to c~ (defined on one more site), 

(~r162 = ( ~ / 3 ' ) ( ~ ' r  

= ( ~ r 1 6 2  

where we have used (M) on a and/3 for the first equality, and on ~ and/3 for 
the second. Dividing both sides by (a'~a/3'), we get 

which is an instance of (M) with ]c~g I + ]/31 = n + 1. Hence by induction, 
positive Markov systems are exactly local Markov systems satisfying the local 
conditions. 

Now the Markov conditions ought to reduce the amount of information 
needed to specify the distribution on a Markov system. In particular, if 
co = ~zcr~2 is active (i.e., different from the null state) on at least two inde- 
pendent sites zl and z2, then (LM) expresses P(w) in terms of probabilities 
of states active on a smaller part of the system. We can continue this reduction 
until we arrive at states whose active portions contain no independent sites. 
Such totally interdependent subsets of the system are called clans (in other 
papers, they are called "cliques";  but graph-theoretic usage reserves this 
term for maximal complete subgraphs, whereas here we consider any subset 
which has no unlinked vertices, including complete subgraphs, single sites, 
and even the empty set). A state of the form Ko (K, K', K",... will be used to 
denote active substrates whose domains are clans) is called a clan state. We 
have seen that once probabilities are assigned to the class of such states 
A _~ f~, the distribution over all the rest of the state space is fixed by local 
conditions. 

So here is another interpretation of the Markov assumption: The 
probability of a particular overall excitation is compounded out of the 
likelihoods of activity in clans of the system. Although this result simplifies 
P assignment for a Markov system, it is not entirely satisfactory, because the 
relationship between P(co) and its component P(Ko)s may be rather com- 
plicated (we will see what it is later on). More fundamentally, we have given 
only an extrinsic account of the way interactions reflect in the distribution-- 
i.e., by means of relations between probabilities of states which differ on 
independent parts of the system. Now we take a different point of view, and 
describe the probability assignment in terms of a simpler underlying structure, 
in such a way that the Markov relations are automatically fulfilled. This 
simple structure is a "potential function," and we might be led to consider it 
by the familiar result about equilibria from statistical mechanics: The 
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probability of a given state of a system is proportional to e-c~, where c is a 
constant (depending on temperature) and @ is the total potential energy of 
the state. 

The usefulness of potentials in physics relies upon the additivity of 
energy: The total q~ is just the sum of terms from all the interacting parts of 
the system. In Markov systems the "un i t s "  of interaction are clans, so we 
seek to describe elementary terms as clan potentials defined by a real-valued 
function ~o on the clan states. A potential is called Gibbsian when it is of the 
form 

�9 @) = 

le-< co 

where K -< o~ means "K is an active (clan) substate of o~." Thus if ~o has the 
null value at some site z ~ Z, there will be no contribution either from the 
singleton clan {z}, nor from any larger clan containing z. It seems arbitrary 
to exclude partially active clans, but this convention is exactly what is needed 
to remove the ambiguity in "reference level" of the various potential terms. 
As we shall see later, allowing contributions from arbitrary clan substates 
adds nothing to our description except redundancy. A random system in 
which P = e -*, where qb is a Gibbsian potential, is called a Gibbs system. 

We digress to clarify how our presentation differs from earlier ones in 
this field. The above definitions of Gibbs and Markov systems agree with 
those given by Hammersley and Clifford, (1~ who extended these notions to 
arbitrary finite patterns of interaction. Other workers such as Dobrushin, (z~ 
Avertinsev, (a~ and Spitzer (4~ were interested in modeling particle equilibria 
in a discrete space, so they took G to be a region of the simple cubic lattice. 
In this context the terminology used was "Gibbs  ensembles" and "Markov  
fields," but we speak of "systems" to emphasize that the results apply to 
general arrangements of interrelated parts. In particular, there is no need to 
assume that interacting elements are close together, so we say that sites 
" in terac t"  rather than "are  neighbors," and use "envi ronment"  and "clan 
potential" rather than "bounda ry"  and "local  potential." 

Also, note that we have made no restrictions on the elementary state 
spaces f2~. In the initial particle models f2, expressed occupancy at the 
corresponding site; and perhaps for this reason it has usually been assumed 
that the number of states available is finite or at least countable. In fact, the 
Gibbsian sum Z~-< ~ ~(K) is well defined regardless of the number of states, 
since it can have no more terms than there are clans in G. In the proofs given 
below of Gibbs-Markov equivalence, f~ can be arbitrary sets. Thus, for 
example, the kilowatt loads of generators in a power network would be 
acceptable elementary states. It is necessary, however, that some measure be 
available on each set f~,, in order to compute normalization constants or 
substate probabilities. 
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2. P R O O F S  OF G I B B S - M A R K O V  E Q U I V A L E N C E  

One feature of a system in which P = e- ~ is that P(oJ) is strictly positive: 
Vanishing probabilities are excluded throughout this section. In this context 
it would be natural to define a function r = - l o g P  even without the 
prompting of statistical physics, simply as a device for converting the quad- 
ratic Markov conditions (M) into linear form: 

dP(aafi) + r = r  + Cp(a'afi) (MdP) 
It is not surprising that potentials additive on the "irreducible" states of the 
system satisfy these identities. 

Theorem 1. Every Gibbs system is Markovian. 

Proof. We show that any ~(~) = ~ .<~ q~(~) satisfies (M~P) by counting 
the contribution of clan substates on each side of the equation. 

The key observation is that no clan can intersect both A and B, since 
otherwise there would be links between independent sets. Thus 

the last term preventing clan substates of ~ from being counted twice. With 
the abbreviation [7] = 5~<~ ~(K), (Me)  becomes 

[ ~ ]  + [~#] - [~] + [~'~] + [~#'] - [~] 

= [,~,~] + [ , ,Y ]  - [,~] + [,~',d + [,~/3] - [,~] i 

The converse result is less trivial. We give three proofs: first, an elegant 
construction (due to Grimmett (5)) of an explicit formula for the clan poten- 
tials in terms of ~;  second, a proof by induction; and third, a clan-counting 
argument that ties together some ideas in this section and the next. 

Theorem 2. Every positive Markov system is Gibbsian, with clan poten- 
tials uniquely determined by 

~(~) = ~ (-1)'~'-~'~e(~'o) 

(In] is the number of sites in the domain K). 

Proof 1. We start from a well-known inversion formula for arbitrary 
real functions on the subsets of some finite set: 

G(B) iff G(B) = ~. ( -  1) I~l-lcIr(C) 
B ~ A  CC--B 

F(A) = 

or, equivalently, 

B ~ A C C - - B  
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where B __q A means that B is a subset of A, and IB[ is the number of elements 
in B. The second identity holds because F(A)  occurs only once in the sum, 
whereas any C with m fewer elements than A can be extended (7) ways to Bs 
containing j of the missing elements; since I B[ - [ C [ = j ,  the total coefficient 
o f F ( C )  is then ~P=0 (-1)J(]  ~) = (1 - 1)"* = 0. 

Application of this result gives 

O(ao) = ~ P(/~) iff r ( /3 )=  ~ ( -1) l~ ' -mO(7o)  

where ~ is an active substate, and ]~ and 7 are substates of a, with and 171 
active sites,respectively. Now we need only show that I'(/3) = 0 whenever B 
is not a clan: then we can identify ~0(K) -- F(~) for clans K and get 

O(ao) = ~ 9(~) iff 9 ( ~ ) =  ~ (-1) '~ '- '~"O(K'o) 

So suppose /~ = ~1~2, where zl and z2 are independent sites. Then any 
7 -</~ must be obtained from 7' -< e by adjoining one, none, or both of the 
states ~1 and ~2. Hence 

V(/~)-- ~ (-1)'~'-r"'[q)(~17'~2o) + 0(07'00 ) - 0 (~7 'oo  ) - 0(o7'~2o)] 
~,"< a 

The bracketed expression vanishes, by the local Markov conditions. 

Proo f  2. We induct on the number of sites in Z. 
Note first that if some sites are fixed in the null state, the system on the 

remaining part of G is still Markovian, because all the conditions for 
O'(~') - O(~'o) are among the (MO) (with the domain of the o substate 
included in the separators). 

Our result is trivial for IZI = 1. Make the hypothesis for IZI < n, and 
consider a system with n sites. If  G is a complete graph, we have the trivial 
case in which there are no Markov conditions, and the formulas relating 
�9 and ~o reduce to the set-theoretic result, since all subsets of Z are clans. 
So suppose that there are two independent sites z~ and z2 in G. By the local 
Markov conditions 

0 ( ~ )  = 0 ( ~ o )  + 0 ( o ~ )  - 0(o~o) 

Now define O~, 02, and 0a to be the fields obtained by fixing z~, z2 and 
z~z2, respectively, in the null state. Each of these yields a Markov system 
with less than n sites, so by the inductive hypothesis they have corresponding 
clan potentials ~ ,  ~%, and ~a. Thus 

= + - 
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But then we may define q~ such that q~(co) = ~ .<~ ~o(K), by 

{ ~ol +q~2-~oa  if K - < a  

cp(K) = cp~ if ~ , -<K 

Note that if ~1, ~2, ~% satisfy the inversion formula, so does % because 
the q)i(Ko) coincide for i = 1, 2, 3 whenever ~: -< a. 

Proof3. This is a proof  by clan counting. 
We say that a term m~(~zo), m an integer, "contains m appearances of  

the clan state K" if ,~ ~ cz; the number of appearances in an expression is 
the sum of  those in individual terms. Call an equation that has the same clan 
appearances on both sides "balanced."  We show that any balanced equation 
must hold true in a Markov system. 

The conditions (LM) can be used to reduce any P(a 0 to P(Ko), and 
hence any ~(co) to its component ~(~o). By the proof  of Theorem 1, such a 
reduction preserves balance. Thus we may assume that the given balanced 
formula is composed entirely of q~@o)s. We claim that each dO(~o) occurs 
the same number of times on both sides, so the equation is true identically. 
For, let E be a minimal equation in which this claim fails. If  K* is a maximal 
clan appearing in E, it appears only in ~@*o), so the number of these terms 
must be the same on both sides of E for K* to balance. But then we may cancel 
the ~(~*o) to get a smaller equation E '  that is still balanced, and thus must 
satisfy the claim, contradicting the choice of  E. 

Now by the same counting argument used in Proof  1, we see that the 
expression 

= 

/r "~/r 

has been cleverly designed to contain exactly one appearance of K, and none 
of other clan states. Thus the equation 

= 

~.~c~ 

is balanced, and so must hold in a Markov system. I 
Note that in all of  these proofs only the local conditions were needed 

to derive the inversion formula, so with the help of Theorem 1 we have 
further demonstrations that every local Markov system is Markovian. Even 
these conditions (LM) are in general redundant. But the equations 

= 

~-<c~ ~ ' ~  

for A not a clan provide a sufficient set of  independent relations on the 
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potential (if A is a clan, the equation holds identically). If there are a finite 
number N of states in f~ and k of them are clan states, there are exactly 
N - k such relations bridging the gap from the ~(K) to qb(oj). Using these 
equations to verify the Markov property amounts to applying the inversion 
formula on clan substates and then checking whether potential sums predict 
the remaining probabilities correctly. 

The inversion formula gives the unique value of ~o(~c) determined by the 
probability distribution. If a Gibbs potential were constructed which included 
extra contributions from partially active clans, the argument of Theorem 1 
would still prove the system Markovian. But then the inversion formula 
could be applied to generate a potential in standard form, making the extra 
terms superfluous. 

Using the definition of the potential, we may express the inversion 
formula directly in terms of probabilities: 

log P(~o) = ~ ~ ( -  1) I~'l-I~l log P(~o) 
/r ~ t.0 Ir ~:~/r 

Equivalently, we have the clan state decomposition formula promised in 
Section 1: 

P(co) = 1-I P(K~ "*~, where n~o~ = ( -  1) I~' ~ ( -  1) I~'' 

Note that this explicit expression was not needed in Proof 3 of the last 
theorem. We see in comparison that the formula 

gives a much simpler reduction of the probability distribution to a function 
on the clan states. 

But other than computational convenience, what is the significance of 
the Gibbs-Markov equivalence? Consider a random system of particles that 
interact only with their neighbors. We may interpret our proofs as follows: 
If influences propagate locally (in the sense of the Markov assumption), then 
P = e -e, where q5 is a sum of contact potentials. In other words, the canonical 
form of the probability distribution for particle equilibria depends only on 
(Markov) localization, and not upon any further details of the physics�9 
Although this result is mathematically interesting, it does not displace any 
of the reasoning about ensembles in statistical mechanics. This reasoning is 
needed to establish that the log P potential corresponds with the physical 
measure of energy--that is, to connect statistics with dynamics. Once this 
connection has been established, the inversion formula for the local potentials 
may be useful in deducing from statistical measurements information about 
elementary forces in the system. 
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3. S Y S T E M S  W I T H  C O N S T R A I N T S  

In some situations it may be convenient to impose constraints on a 
system so that nonzero probabilities are assigned only to some subset of the 
state space f2 + ___ f2, which need not be a Cartesian product  of  elementary 
spaces. For  example, these constraints might express the need for conserva- 
tion of the particle number, total energy, or spin of  the system. States in the 
region s ~ = f2 - f2 + which violate the given requirements are forbidden-- 
that is, assigned zero probabilities. In this context the Markov conditions (M) 
still make sense, so we may study their consequences even though log P is no 
longer well defined, and we do not have the convenience of an additive 
potential. Most  of  our results are pathological. But we establish criteria for 
a system to be expressible in terms of a suitable limit of  Gibbs potentials. In 
this case a simple linear description is possible. 

The first indication that earlier results go wrong is the existence of loca 
Markov systems that are not Markovian. Consider the graph in Fig. 2(a), 
where each of the three sites can have only two possible states: active (indi- 
cated by asterisks) and null. This is the simplest system with a nonloeal 
Markov condition, an example of  which is given in Fig. 2(b). Note that none 
of  the states in this equation differs at exactly two independent sites from 
another, so no pair can occur on the same side of  a local condition. Thus if all 
the other states are forbidden, the (LM) have at least one vanishing prob- 
ability on each side, and reduce to 0 = 0, whether the distribution on [2 + is 
chosen to satisfy the global condition or not. 

This example shows that the proofs of  Theorem 2 cannot be expected to 
extend to the case with constraints, since they are all based solely on local 
conditions. Note, however, that a given system can be expressed as a con- 
tinuous limit of  positive Markov systems iff P(co) = exp[- l im~ ~,~.<~o q~(K)], 
since Gibbs -Markov  equivalence holds at all the positive stages. Now one 
way such a P ( @  can vanish is that q~*(K) can become infinitely large for some 
K -< co. Clan states that are energetically forbidden in this way are called 
barriers, and a Markov system in which all zero probabilities can be attributed 
to barriers is a barrier system. A necessary condition on such a system is that 
P(co) = 0 only when P ( ~ . ) =  0 for some (barrier) ~c-< ~o. In fact, this 
"barr ier  proper ty"  is also sufficient. For, define 

p if P(~ . )  = 0  
~(,~) = _ ~ ( _  1)l~[-I~'l log P(o,~') otherwise 

x:'"< le 

0 P( l - -P(__)  
Fig. 2. The simplest local Markov system that is not Markovian. 
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4 d 

U o+o 

Fig. 3. A Markov system that violates the barrier property, but is expressible in terms of 
barriers and wells. 

Then limp_.| e x p [ - ~ . < ~  q0p(~)] will vanish whenever P(K.) = 0 for some 
-< co, but will equal P(co) whenever the probability is positive: for in this 

case P(~o) > 0 for all substates ~ of  co, so P(co) can be reduced to P(Ko)s just 
as in Theorem 2. 

Note that  the definition of barrier system depends upon a choice of  
reference state, because only active clans are candidates as barriers. But even 
if partially active clans are included, there are Markov systems that cannot 
be expressed in terms of barriers. Consider, for example, the four-site system 
with the eight states shown in Fig. 3(a) each having �89 probability. I f  the other 
states are forbidden, it is easy to verify that the distribution is Markovian:  
for, note that states in f~ + that coincide on one of the diagonals (i.e., on a 
separator) are adjacent in the above octagon, and they differ only at a single 
site; so no nontrivial condition (M) can have two nonvanishing probabilities 
on the same side. On the other hand, none of the clan states satisfies 
P(~ . )  = 0, since every possible substate at each site or connected pair of  
sites occurs at least once among the f~ + states. 

Nevertheless, it is possible to express the above system by means of a 
continuous limit of Gibbs potentials. Label the singletons and pair clans with 
numerals and letters as in Fig. 3(b), and then define 

f 
- l o g ~  for ~ c = 0  

for ~ = 1 , 4  
~~176 = for ~ = 2, 3, d 

- O  for ~ = a , b , e  

Figure 3(c) abbreviates the + o assignment. Note that any chain of  active 
sites starting at 1 or 4 and curling around under the square encounters as 
many minuses as plusses, whereas other states have a majority of  barrier 
substates. Thus e x p [ - ~ <  co ~oo(K)] stays fixed at -~ on f~+ states, but reduces 
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to ~e -~ on all states in f2 ~ which therefore have vanishing probability as 
p ----> oo.  

In addition to the potential barriers q~(~c) -+ +0% in this example we have 
introduced infinite potential "wells"  q~(K)--->-oo. Now we can understand 
how P(co) can vanish in a Gibbs-Markov limit without P(•.) = 0 for any 
K -< co: While an infinitely repulsive or forbidden configuration may exist in 
one part of the system, an infinitely attractive or favorable configuration may 
exist in another. The drawback of bottomless potential wells is that they can 
impart infinite energy to anything that falls in with them, so that the corre- 
sponding probabilities may diverge. Yet, as the above example shows, they 
may appear in such a way as to be completely masked by the repulsive 
potentials, manifesting themselves only as violations of the barrier property, 
while probabilities are bounded in the limit. 

Are barriers and wells sufficient to describe any Markov system in terms 
of a limit of Gibbs potentials ? Such a representation can be sought in two 
stages. 

(a) Fill in zero probabilities with positive numbers, checking for values 
that are determined by the Markov conditions after each replacement. If  
there are no inconsistencies, this process yields a distribution P + that coin- 
cides with P on f2 +, but is positive on the rest of f2 as well (e.g., e x p [ - ~  q~o] 
above). 

(b) Make use of any free parameters in the choice of the positive system 
to go to the limit in such a way that P + -+ P (e.g., the limit with respect to p 
above). 

Stage (a) will fail only if some consequence of the Markov conditions is 
violated by the initial distribution on f2 +. Now we have seen that substitution 
and cancellation of terms in (M) gives rise to "ba lanced"  equations 
YIP= 1 P(cod = F[P= 1 P(co~'), where {co~} and {co/} contain the same clan states. 
Note, moreover, that stage (b) fails when one of  these equations has some 
forbidden states coo on one side, but is strictly positive on the other: For, then, 
any attempt to make some of the p(co o) go to zero forces the others to diverge. 
But if all the balanced conditions are satisfied, we expect that both stages of 
the limit construction will be feasible. 

Extending the notion of a Gibbs ensemble to include the possibility of 
constraints, we call a random system which can be expressed in terms of a 
continuous limit of Gibbs potentials a Gibbs-Markov  system. It is easy to 
see that the following holds. 

Theorem 3. The balanced conditions (B) hold in a Gibbs-Markov 
system. 
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Proof. Each positive Markov system satisfies the balanced conditions, 
by Theorem 2. But then (B) hold in the limit as well, because the limit of a 
product  is the product of  the limits. | 

The converse is less trivial. In order to make the two-stage algorithm 
sketched above precise, we formulate a linear framework. Regard the 
potential ~b as a vector q~09 indexed by the states ~o ~ f2; clan potentials also 
form a vector %, indexed by clan states K ~ A. Let ~ be the matrix 

Then a potential qb is Gibbsian iff qb = ~cp--that is, iff it is in the range of the 
transformation ~. I f  qb+ is defined on some subset fl + ~ ~, then it is a 
" res t r ic t ion"  of  a Gibbs potential iff it is in the range of ~ +, obtained from 

the ~oth rows for oJ r ~2 +. Balanced conditions correspond 

n09~09~ = ~ m09~09~ or (n - m)~ = 0 
O3 r 

where no~ and m~ are lists of positive integers giving the exponents of P(oJ) 
on the two sides of the equations. The heuristic arguments connecting condi- 
tions (B) with the two stages of limit construction are justified in the following 
lemmas (see appendix for proofs). 

Lemma 1. Let M be a finite matrix of  integers. Then v is in the range of 
M iff nv = 0 for every integer vector n such that n M =  O. 

Lemma 2. Let M, N be finite matrices of  integers. There exists an 
integer vector n o such that Mn ~ = 0 and Nn ~ > 0 iff there are no integer 
vectors m and n >t 0 such that m M + n N =  0. (Here > means that all 
components are strictly positive, and i> means that the components are 
nonnegative but not all zero.) 

Now we are equipped to prove the following. 

Theorem 4. A triplet (G, f~, P)  in which f~ is finite and P satisfies all the 
balanced conditions is a Gibbs -Markov  system. 

Proof. Decompose ~ into (~) ,  where ~+ is indexed by the allowed states 
f~ + and ~o by the forbidden ones ~o. The finiteness of  ~2 assures that ~ is a 
finite matrix, so the two lemmas apply. Take M = ~+, N = ~o, and v = q)+, 
where ~09+ = - l o g P ( c o )  for co ~ f~+. 

(a) An integer vector n such that n~ + = 0 corresponds to a balanced 
condition, which would be violated if n~  + ~ 0. Hence by Lemma 1 there 

f~  if K <( oJ 
~09~ = otherwise 

by eliminating all 
to relations 
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exists a vector q)+ satisfying q~+ = ~+q~+. This clan potential defines an ex- 
tension of P to a positive distribution on all of ~2. 

(b) Integer vectors m and n I> 0 such that m~ + + n~ ~ = 0 correspond 
to a balanced equation which has zero probabilities on one side, while the 
other side is strictly positive. Hence by Lemma 2 there exists an integer 
vector n o satisfying ~+n ~ = 0 and ~~176 > 0. But then if we define q~" = 
~(~o + + pn~ this potential stays fixed at q)+ on the states in f~+ regardless 
of any changes in the parameter p. Since, moreover, ~ P  --> ~ as 0 -+ oo for 
co ~ f~o, we see that limp_. ~ e x p ( -  q~o)) is the desired limit representation. 

An immediate consequence of Theorems 3 and 4 is the following result. 

Corollary. A Gibbs-Markov system can always be expressed in the form 
P(co) = l imD~ e x p ( - ~ ) ,  where q~P = ~(q)+ + pn~ The integer com- 
ponents of n o record the relative heights of potential barriers and depths of 
potential wells needed to exclude or reinstate cos in accordance with con- 
straints. 

To get more detailed information on Gibbs-Markov systems, we must 
investigate the balanced conditions (B). First of all, we note that the number 
of  terms n must be the same on each side, because the o clan appears once in 
each P(co~) (or, equivalently, because the Markov conditions are invariant 
under changes in normalization). Thus the balanced equations can be 
classified according to their order  n. The first few orders have simple structure, 
as follows. 

n = 1. P(co) = P(co'). Since the same point states appear in co and co', 
these states must be identical, so the first-order conditions are all trivial 
equalities. 

n = 2. P(col)i"(co2) = P(col ' )P(co2') .  One of the consequences of Theo- 
rem 2 is that an equation balanced on clans active with respect to a particular 
null state remains balanced under a change of reference. Thus we may sup- 
pose that, say, co2 is defined as the null state. Then active clans appear only 
once on the left side, as substates of col. Thus if the active parts of  col' and w2' 
a r e ,  and/3, respectively, the domains A and B must be disjoint, so "1 = c~o/~ 
and P ( ~ o ~ ) P ( o )  = P ( , o ) P ( o ~ ) .  Moreover, A and B are independent, since 
otherwise there is a 2-clan on the left which does not appear on the right. 
Hence the above condition is simply an instance of (M). If  we now restore 
the original reference state, we remain within (M), so the second-order 
equations are exactly the Markov conditions. 

n = 3. P(co~)P(co2)P(coa) = P(w~')P(co2')P(co3') .  Let 0 be the substate 
made up of all those active elementary states that appear more than once 
among the co~ (there can only be one multiple state at each particular site, so 
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& 

Fig. 4. Third-order conditions and examples of Markov systems that cannot be expressed 
as Gibbs limits in any form. 

0 is well defined). Then by changing the reference state to 0o, we induce a 
third-order equation with clan states appearing only once on each side: 
P(alo)P(c~2o)P(~ao) = P(~lo)P(132o)P(~ao) where the a~ are active substates 
with disjoint domains (similarly the 13j). Note  that Us As = U~ B~ is required 
to balance 1-clans. Now let ~,~ be the substate that coincides with e~ and/3j 
where they are the same; then e~ = 7'~1~2~'~3 and 13j = ~'lj~'2j~'a~. The condition 
can be pictured as in Fig. 4(a), where the 3 x 3 array corresponds to the do- 
mains C~j of  the ~,j, and the darkened rows and columns represent the activity 
of the a and j3 substates, respectively. The blank box is the par t  of the system 
which is fixed in the null state. Domains in the same row or column must be 
independent, since otherwise there would be an active 2-clan on one side that 
does not appear on the other; domains on different lines can interact arbi- 
trarily. Note, conversely, that this pattern of interaction assures that the 
equation is balanced. By restoring the original reference state, we derive the 
general third-order condition f rom one of the above form. Equations of  order 
n >i 4 are much more complicated. 

Now when P > 0 all the balanced conditions can be derived from the 
second order (LM) by substitution and cancellation. But if there are con- 
straints, cancellations may involve division by zero, so the higher-order 
conditions may go wrong. Consider, for example, the third-order equation 
in Fig. 4(b), obtained by taking the C~j as single points in a 3 x 3 array. We 
assume that sites in the same row or column are unconnected, but all the 
other edges in this nine-point graph are present. Recall that a pair of states on 
one side of a Markov condition must differ on two (nonempty) independent 
sets. But any pair of the above six states differ on a connected set (an hexagonal 
graph for states on the same side of the equation; a square on opposite 
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sides). Hence if all the remaining states are in ~2 ~ the Markov conditions 
will reduce to 0 = 0, regardless of whether the six probabilities in the illus- 
tration are chosen to satisfy the cubic identity or not. 

In fact, the domains on which the six states differ are all cycles, so they 
remain connected even if a diagonal of elements (forming a triangle) is 
deleted. Thus a six-point graph with f~ + states as shown in Fig. 4(c) gives an 
even simpler Markov system that cannot be expressed in terms of a limit of 
Gibbs potentials. 

One might hope at least to set an upper bound to the order of  conditions 
needed to assure that all the balanced equations hold. But it is easy to 
generalize the above example to a system that is well behaved at all orders 
k < n but fails at arbitrarily large n. Simply take an n x n grid of sites, 
independent as before along rows' and columns, but interacting everywhere 
else. Letting cq be the ith row state and/~j the j th  column, we have that 
1~=1 P(~)  = ]7i}~=1 P(fij) is balanced. Now consider any identity of  order 
k < n which has only row or column states on one side, say the left. Then 
exactly nk point clans appear on that side, so nk must appear on the right. 
Since, however, no 2-clans appear on the left, all the states on the right must 
be active on complete rows or columns as well (a domain with more than n 
sites would contain at least one connected pair). But then if a particular row 
cq occurs on the left, it is also on the right: otherwise, in order that every 
point clan in ~ be included, all the pj must occur on the right, contradicting 
k < n. By induction, the only lower-order equations containing just ~s and 
fljs on one side are trivial identities. So if the other states are assigned zero 
probabilities, all conditions of  order less than n are satisfied, even if the nth- 
order one is arranged to fail. 

4, S U G G E S T I O N S  FOR F U R T H E R  W O R K  

We have seen that there are graphs which require that an arbitrarily large 
number of balanced conditions be checked to verify that a Gibbs-Markov 
representation of the system exists. But for any particular graph there should 
be a finite set of relations from which all of (B) can be generated by multiplica- 
tion and substitution (without cancellation). Is there a practical algorithm for 
deriving these generators from the structure G, ~ of the system ? The two- 
stage construction of limit representations gives a procedure for checking 
balanced conditions, and linear programming techniques can be applied 
directly to the matrices ~+ and ~0 to ascertain whether there are clan potential 
solutions. But can we make use of counting arguments (like those on the 
form of n = 1, 2, 3 conditions) to organize a more economical or intelligible 
approach ? 

In particular, what special properties does the transformation ~ have by 
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virtue of being an incidence matrix for the relation M of clan inclusion ? We 
have already proved in Theorem 2 that ~ has a left inverse/z given by 

( ( - l )  I~1-'~ if ~o -<x 

/ ~  = ~,0 otherwise 

Note that ~/~ = ~r is a projection operator from arbitrary distributions onto 
the subspace of  Gibbs potentials: Its components 

= = f o r  -< 

coincide with the exponents in the formula for decomposing P(~o) into its 
clan state probabilities. The matrix ~ is obtained from the "zeta  function" 
by a process resembling M5bius inversion (see Hall, (6) Chapter 3). In fact, 

is not a square matrix, and the relation -<, though transitive and anti- 
symmetric, fails as a partial ordering because it is not reflexive. But it is 
reflexive on the subset A c ~2 of clan states which indexes the domain of ~, 
so/z~ = 1 does provide the usual recursive definition of a MSbius function: 

F ~  = 1 and /%~, = - ~ / ~ .  for ~' -< x 
~c'-<-<~c"-<~e 

(where K' <-I K" means that K' is a strict substate of K"). If  the state space is 
restricted to f2' _~ f2, this inversion can still be carried out, provided that the 
domain index set is also cut down to A' = A c~ f2'. Are the resulting/Z and 
projection ~r' of  any use in determining whether a restricted distribution can 
be extended to the whole state space .9 

Another approach is to formulate alternative types of  random systems 
that have simpler behavior under constraints than Markov systems. Actually, 
the examples in Section 3 rely on some rather peculiar quirks of the Markov 
conditions. In particular, the reason the barrier property may fail is that, 
although P'(a)  - P(ao) is Markovian on the subset A of Z, the distribution 
P"(a) = P(~.)  need not satisfy (M). In other words, a subsystem o f a  Markov 
system need not be Markovian! From another point of view, we have 
insisted that P(al~ ) = P(~I~,) whenever E is the environment of A, and C is 
independent; but if only part of E is known, then the likelihood of a will in 
general change with knowledge of states independent of A (perhaps because 
influences may creep in through undetermined parts of the environment). 

These peculiarities are excluded in a strongly Markovian system, for 
which any subsystem is Markovian: that is, the distribution satisfies the 
conditions 

P(~ ' t~)P(a '~ '~ ' )  = P (~ ' f i ' )P (~ ' a ' ~ )  (SM) 

whenever A and B are independent (the dot indicates summation on an 
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J 2 3 
a h =  : �9 bh. 

Fig. 5. Graphs for the simplest Gibbs systems that are not (a) strongly Markovian and 
(lo) expressible in terms of pair potentials. 

arbitrary part  of Z).  Constraints cause no difficulty in such systems, because 
the barrier property always holds. For, if P(~o) = 0 and oJ = c.~fl, where A 
and B are independent, then (as in ordinary Markov systems) 

P(,~)P(.~.) = P(a~.)P(.~/~) 

implies that P ( aa . )  = 0 or P(.crfi) = 0. But now if the forbidden substates 
has independent parts, we can use (SM) to continue the reduction until we 
arrive at a clan K <~ oJ such that P(K-) = 0. Note  also that there is no problem 
about  dependence of barriers on the choice of  null state: in a strong!y 
Markovian context, (SM) implies that P(w) = ~ < , o  P(K') ~ ,  so we may  
define ( I ) ( ~ . ) = - l o g P ( ~ . )  for P ( ~ . ) >  0 and use the usual inversion 
formula for the clan potentials without any mention of a reference state at all. 

Unfortunately, many  Markov systems are not strongly Markovian. 
Consider, the instance, the three-point graph shown in Fig. 5(a). We define 

- !  for ~: = 12 active 

~o(K) = - for K = 23 active 

otherwise 

Then the strong condition 

[(13) + (123)][(0) + (2)] = [(1) + (12)][(3) + (23)] 

(where the numbers indicate active sites, and summation occurs at site 2) 
becomes (1 + e~eb)(1 + 1) = (1 + e~)(1 + e~). This reduces to (1 - e ") x 
(1 - e b) = 0; and it is easy to see in general that a given Gibbs potential 
on this graph yields a strongly Markovian system iff ~(K) vanishes on one of 
the pair clans 12 or 23. Is there a simple characterization of (SM) systems 
that holds on larger graphs as well? 

Another special kind of system that may be of interest is determined by a 
pair potential--that is, a Gibbs potential which has no contributions from 
clans larger than two sites. The need for n-body interactions with n > 2 does 
not seem to arise in physics: known exchanges can be analyzed in terms of 
two-body potentials. Is there any Markovlike (extrinsic) property of  the 
probabili ty distribution that corresponds to this requirement? There does 
n o t  seem to be any connection with the strongly Markovian systems: The 
previous example Was given by a pair potential, but violates (SM); conversely, 
the four-site system in Fig. 5(b), where ~(x) = a on the triangle and zero 
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elsewhere, is strongly Markovian, but cannot be expressed in terms of pair 
potentials. 

Finally, we consider how the notions of Gibbs-Markov systems may be 
extended to infinite or continuous domains. Define ~~ to be ~(ao), where 
a is the substate of o~ on the domain A-- tha t  is, qS~ is the potential 
resulting from "turning o n "  co on some part of the system A. Then the 
Markov conditions become 

r u B) = r + r - ~ ( A  • B) (r  

whenever A and B are separable in the sense that their nonoverlapping parts 
A - B and B - A are independent. I f  we ignore the latter condition, d) ~ 
resembles a finitely additive set function. Thus if (r  held for aU subsets of a 
finite set, d)~(A) would just be the sum of (I)~((a}) for all a ~ A (assuming that 
(I)~ is normalized to zero). In our case we may say that q)~ is additive 
"wi th  respect to the relation of separability." This relation is monotonic 
in the sense that any pair of subsets A' and B' of separable sets A and B is 
separable as well. The essential content of Theorem 2 and the inversion 
formula is that a set function additive with respect t o a  monotonic relation R 
can be expressed as a (particular) linear combination of values on sets 
"irreducible" under R; the proofs depend on the discreteness of Z. But is it 
possible to find an analogous expression �9 = ~ for (I) additive with respect 
to relations on more general (continuous) domains ? 

A P P E N D I X  

First we consider two propositions about arbitrary real matrices; then 
we derive Lemmas 1 and 2 by introducing restrictions to integral values. For 
ease in writing, vectors are denoted by lower case letters; matrices, by capitals; 
matrix multiplication, by juxtaposition of the corresponding symbols, where 
it is understood that vectors appearing on the right of products are column 
vectors, while those appearing on the left are rows. In particular, the inner 
product  ~ w~v~ is abbreviated wv. 

Proposition 1. A vector v is in the range ot M iff wv = 0 for every w such 
that w M = O. 

Proof. Define the orthogonal complement of a subspace X to be 

X a = { y :  y x = O  for every x E X }  

The proposition follows from the familiar result that X = X ~• in any finite- 
dimensional vector space. In particular, v is in the range or column space 
R(M)  iff it is perpendicular to every vector in the orthogonal complement 
R ( M )  • l 
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F o r  our  second result  we need a different no t ion  of  complement ,  to take  
in to  account  the pos i t iv i ty  requi rements  on vectors.  Suppose  C is a closed 

convex cone in a finite vector  space (see Hall ,  ~6~ Chap te r  8). Then the dual C* 
defined by  

C * = { y :  y x > 1 0  for  every x ~ C }  

is i tself  a convex cone. Cor re spond ing  to the o r thogona l i ty  results,  we have 
C = C**, and  the fo l lowing special case (due to F a r k a s ) :  y = xA ,  where 
x t> 0, iff yw >t 0 for  every w such tha t  A w  >i O. 

N o w  we are equ ipped  to p rove  the following.  

Proposition 2. There  exists a vec tor  w such tha t  M w  = 0 and  N w  > 0 
iff there  are no w 1 and  w 2 /> 0 such tha t  w I M  + w2N = 0. (Recal l  tha t  > 

means  tha t  all componen t s  are  strictly pos i t ive ;  i> means  tha t  they are non-  
negat ive and  not  all zero.)  

Proof. Let  ~ be the col lect ion o f  rows o f  N. We seek a w sat isfying 
M w  = 0 and  rw > 0 for  all r E ~ .  Suppose  ~ '  is a max imal  (possibly  empty)  
subset  o f  N for which a co r respond ing  w exists. We  show tha t  ei ther N '  = ~ ,  
or  else there are  vectors w 1 and  w 2 /> 0 sat isfying w I M  + w2N = O. 

F o r  suppose  there is some r ~  ~ - ~ ' .  Define N '  to be the ma t r ix  
ob ta ined  f rom N by s t r ik ing out  all such r ~  is, N '  consists  exact ly  o f  
the  rows in ~ ' .  Then there exist vectors  w ~ sat isfying M w  ~ = 0 and  N ' w  ~ > O, 

but  for  al l  such w ~ r~  ~ ~< 0. In  fact,  r~ <~ 0 for  all w such tha t  M w  = 0 

and  N ' w  >i 0 (even i f  some o f  the la t te r  compo ne n t s  vanish).  F o r  any  such 
w can be expressed as lima~o*(W + hw~ where  N ' ( w  + Aw ~ > 0 for  all 
A > 0, so r~ = l im~Q+ r~ + Aw ~ <~ O. Define 

Then A w  >1 0 i f f M w  = 0 and  N ' w  >>- O. Hence  by F a r k a s '  t heorem - r  ~ = 
x A  or x ~ M  + ( x 2 N  ' + r ~ = 0, where x 2 i> 0. This iden t i ty  provides  the 
desired values for  w ~ and  w 2. 

Conversely,  suppose  tha t  w ~ and  w 2 exist. Then  M w  = 0 implies  
w~Mw + w2Nw = w~Nw = 0, con t rad ic t ing  N w  > 0 and  w 2 i> 0. | 

In  o rde r  to in t roduce  res t r ic t ion  to integer  values,  we use the fo l lowing 
add i t i ona l  result.  

Proposition 3. Let  M be a finite r a t iona l  matr ix .  I f  w M  = 0, then 
w = ~ A~n ~, where the  ,~ are  real numbers  a n d  the n ~ are  integer  vectors  
such tha t  n k M  = O. 

Proof. Induc t  on the  number  o f  rows in M. 
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The result is obvious if M vanishes or consists of  a single row. Hence we 
may  assume that  some element, say M n ,  is nonzero,  so that  wl can be ex- 
pressed as a rat ional  combinat ion  of  the other components  o f  w: wl = 
- ( 1 / M l i )  ~ = 2  w~Mil. Then w M  = 0 becomes ~}~=2 w~[M~j - (M~lMl~/Mll)]  

= 0. Regard the expression in brackets as a matrix M '  with one less row 
than M, and let w' be (w2, wa,..., w,). By the inductive hypothesis, w ' M '  = 0 

implies w' = ~ ),kn '~, where n 'k satisfies n'~M ' = 0. N o w  we define n~ '~ = 
- ( 1 / M l l )  ~ = 2  ni'~Mil,  and note that  ~ = 1  n~'~M~l = 0 and w = ~ )t~n '~. 
Since M is rational,  all the n, 'k are rational, so we may multiply out  the 
denominators  (transfer them to the A~) to get the required integral nL | 

Lemma 1. Let  M be a finite matrix of  integers. Then v is in the range o f  
M iff nv = 0 for every integer vector n such that  n M =  O. 

Proof. In  light of  Proposi t ion 1, we need only suppose that  there is some 
real w such that  w M  = 0 but  wv # O. By Proposi t ion 3, w = ~ Akn ~, where 
nkM = 0, and at least one of  these integer vectors must  satisfy n~v ~ O. 

Lemma 2. Let M and N be finite matrices of  integers. There exists an  
integer vector n o such that  M n  ~ = 0 and Nn ~ > 0 iff there are no integer 
vectors m and n /> 0 such that  m M  + n N  = O. 

Proof. We use Proposi t ion 3 to show that  the statements in this lemma 
and in Proposi t ion 2 are equivalent when M and  N are integral. 

Suppose there is a real vector w such that  M w  = 0 and N w  > 3 > O. 

Then w = ~.~ ;~n k, where M n  ~ = 0. I f  the )t~ are irrational, there are rational 
~,~' such that  I Ae - Ak'l is arbitrarily small. Since all the n k are bounded,  
there is therefore a rational w' = ~k ~ 'nk for which Nw'  > ~/2 > 0. The 
required n o is obtained by multiplying out  denominators .  

On  the other hand, suppose there are real vectors w 1 and w 2 >i 0 such 
that  w~M + w2N = 0. We may  assume that  w 2 is in fact strictly positive, 
since the zero components  and corresponding rows of  N c a n  simply be ignored. 
Again,  w ~ = ~ ?,~m k and w ~ = ~.~ Akn ~, where m ~ M  + n e N =  0. We choose 
rational ;t~' sufficiently close to ),~--this time so that  w '2 remains strictly 
pos i t ive- -and  then multiply denominators  to get the desired integral vectors. 
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